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SPACECRAFT SECONDARY POWER REQUIREMENTS
DURING THE SIXTIESL. 2,3

I. INTRODUCTION

Spacecraft secondary electrical power system provides all nonpropulsive
power. This includes the requirements for guidance, attitude control, telemetry,
and scientific experiments.

For secondary electrical power, not more than 3 to 5 kw will be required
during the next five to eight years. This estimate is based on the availability of
boosters and their payload weights as tabulated in Table 1.4 As a general guide,
1/4 w/1b of spacecraft is the requirement. Figure 1 presents estimated minimum
and maximum power needs during the 1960's.

For manned probes of the 60's it appears unlikely that more than 10 kw will be
required for secondary electrical power. However, thereisadeveloping need for
high-power systems, suchas 30 and 300 kw SNAP systems, forthetesting of electri-

cal propulsiondevices. Itisfeltthatthese reactors should be developed andtailored

1This paper presents the results of one phase of research carried out at
the Jet Propulsion Laboratory, California Institute of Technology, under Contract
NASw-6, sponsored by the National Aeronautics and Space Administration.

2This Technical Release was presented at the Conference on Electrical
Engineering in Space Technology, sponsored by The American Institute of Elec-
trical Engineers, in joint participation with The Institute of Radio Engineers and
The American Rocket Society, at Dallas, Texas, April 11-13, 1960,

3The authors wish to emphasize that the ideas expressed herein are per-
sonal ones and are not necessarily those of the management at the Jet Propulsion
Laboratory or the National Aeronautics and Space Administration,

4Table 1 of this Technical Release was taken from Space Handbook: Astro-
nautics and its Applications, prepared by RAND Corp., Santa Monica, California,
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to the electrical propulsion systems to which they will deliver more than 90
percent of their output. The relative amount of power requirements for communi-
cations, guidance, and life support will be negligible in comparison to the ultimate

megawatt requirements for interplanetary electrical propulsion.

II. SPACE GOALS AND MISSIONS

The designer of electrical power systems must know the goals and pur-
poses in space if he is to correctly make the many detailed design decisions that
involve the trade-offs and compromises between the various technologies and the
diverse objectives of the space program. As he attempts to resolve each tech-
nical question in electrical power system design he is quickly led, by a series of
steps in logic, to the core question: "What should be the relative degree of
emphasis on the development of technical equipment for lunar versus inter-
planetary flight operations?"

The authors believe that the general pattern of the exploration, the mili-
tary operations, and the economic development of the North American continent
will be repeated with respect to the development of operations in the solar system.
Scientific exploration is the first phase; and it is a vital stepping stone that must,
to some degree, precede manned operations in space. Manned operations in
space will also be partially devoted to scientific exploration. The scientific
exploration of space will probably uncover new knowledge, applicable to life on
Earth, that may more than justify the cost of the entire space program. The
development of new technology for space operations will probably lead to bene-

ficial results on Earth, as from World War II operations radar fostered television
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and the atomic bomb led to peaceful uses of reactor power, plus the development
of radio-isotope tracer research techniques in medicine,

In the development of the North American continent the initial phase of
exploration was followed by military operations, The "scientific exploration" of
Columbus was followed much later by the military operations of Cortez and
La Salle., Although the idea of military operations in space is so repugnant that
many avoid thinking about it, the technical advisors to our nation must face
reality., If another nation is permitted to occupy and control the major bases in
space such as the Moon, Mars, Venus, and others, America will lose her
freedom to operate in space, except under a very substantial handicap. The
struggle between France, England, and Spain in 1588 for the control of the North
American continent is a lesson from history as to what the future may hold.

The third phase of development of new territory is that of economic or
commercial operations. As Columbus could not foresee the economic develop-
ment of the American continent, so it is difficult today to foresee in detail the
economic development of space operations. However, given substantial amounts
of electrical power to create whatever may be needed from the materials that
already exist on the Moon and the planets, manned commercial operations in
space will grow rapidly. At first there will be the service and housekeeping
functions performed for a small laboratory staff, Later the servicing and main-
tenance of spacecraft will be conducted by commercial organizations. Logistics
will dictate that - given unlimited power from nuclear reactors - ore reduction
and machine shops will be established to make as many things as possible to

establish self-sufficiency and reduce costs. Food will be grown by hydroponics.
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The installed power-generating capacity on the Moon will grow rapidly and will
probably exceed 500 Mw by 1985, As a matter of reference, the installed power-
generating capacity of the United States exceeds 150,000 Mw.

There are many factors that affect the selection and design of the space-
craft electrical power system. In order to properly select a power system, a
multiple-parameter matrix must be prepared. The following major factors are
to be considered in this multiple-parameter matrix:

1. Objectives

2. Instrument or manned flight

3. Type of mission from a solar and energy storage standpoint
4. Propulsion or secondary power

5. Spacecraft weight

6. State of the art as it will develop in the future years

Table 2 presents a detailed breakdown of this power system parameter
matrix.

The design of a spacecraft is a series of iterations, all iterations leading
toward the most efficient and effective method of accomplishing the tasks. Pre-
liminary descriptions of the operations of each of the various functions usually
end up as a series of general statements. For example, a communication-
functional specification might be written stating that the radiated RF power
requirements were based upon required bandwidth, range, and possible antenna
gain. Naturally, antenna pattern or gain is a direct function of‘ the degree of
attitude control achieved. An interaction also occurs between the desired scien-

tific experiments, the possible methods of data storage, and the most efficient
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method of conversion to minimum bandwidth format. Attitude control and
mechanization, primary Sun-orientation, or Earth-orientation of the spacecraft
are problems which must be solved. Some of the various factors which concern
these trade-offs will be discussed in the succeeding sections of the Technical

Release.

III. DETAILED MISSIONS AND SUBSYSTEM ANALYSIS

Having established the mission and its objective, the trade-off between the
power consumption for the various subsystems is made. Table 3 shows such a
power system allocation chart for the first-generation JPL spacecraft. It is of
interest to note that there are approximately 27 different voltages listed on this
chart., Later analysis has indicated that the payload package will require an
additional 20 different voltages. These power levels range from a few milliwatts
to a maximum of 50 w. A block diagram of the experimental payload power
system is shown in Fig. 2. This planned payload has an oriented solar-powered
panel system with a non-rechargeable battery for launch-acquisition phases and
as a subsequent back-up source of power. An over-all view of the spacecraft is

shown in Fig. 3.

IV. SPACECRAFT SUBSYSTEMS POWER

A. Scientific Instruments
Figure 4 shows the manner in which the bandwidth compensation is utilized

to transmit photographs of the Moon and the planets back to Earth. A 40, 000-bit
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picture is transmitted in little over an hour with a 5 cps bandwidth system. For
the early scientific Martian space probes, the scientists have determined that an
88-bit/ sec bandwidth would transmit all the information considered necessary to
obtain the desired scientific data. In space, the rate of change of scientific
information is slow, and therefore large communication channel capacity is not
required. It is not considered really necessary from a scientific standpoint to
transmit television pictures in real time which would require a 6 mc bandwidth,
Photographs can be taken at periodic intervals and the information transmitted
continuously at a reduced bandwidth to lower the power requirements and still
obtain very adequate scientific information. Seventy-eight bits/sec were simi-
larly planned for the Venus space probe. Table 4 shows a tabulation of the

scientific experiments planned and the bandwidth capacity requirements,

B. Communication Subsystem

It is possible to transmit a significant amount of information from the
depths of space with a relatively small amount of power by utilizing the high-gain
antennas of the world net and directional antenna aboard the spacecraft. Figure 5
shows a plot of the power requirements for a 100 cps bandwidth system in both
the 100 and 1,000 Mc region. > As shown in Fig. 6, earth-oriented antennas of 25-ft

diameter aboard the spacecraft will provide antenna gain of approximately 34 db at

5Figure 5 of this Technical Release was taken from the Desklog of the
Defense Electronics Division, General Eiectric Corporation, 1960 edition,
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1,000 Mc. The world net antennas have a gain of approximately 60 db. It is
therefore reasonable to plan on a transmission link in the 1960-1965 era of 90 db,
as shown in Table 5. This permits the transmission, in 1964, of a very signifi-
cant amount of scientific information for slightly more than 100 w of transmitter

power. Transmitter power efficiency is usually 25 to 35 percent.

Utilizing the world net, it is apparent as shown in Table 5 that a 100 w
transmitter with a power input of 300 w will be able to transmit television
pictures in real time from the Moon in 1964. Voice conversations in real time
from Mars and Venus will be readily possible by 1964. Those communications
systems described in Table 5 utilize no data processing to eliminate redundant
information and increase the efficiency of the transmitter system. No bandwidth
compensation techniques are considered in the data presented in Table 5, Very
substantial gains - a factor of three - could be achieved in the transmission of
information in terms of bits per watt if these advanced communication techniques

were utilized.

The significance of the signal-to-noise ratio is graphically demonstrated
in Fig. 7 and 8 which present photographs of the Moon at both 10 and 20 db signal-

to-noise ratios. 6

6Figures 7 and 8 of this Technical Release were obtained from "Pictorial
Data Transmission From a Space Vehicle' by J. F. Baumunk and S. H. Roth,
an article published in Electrical Engineering Magazine, Vol. 79, No. 2, pp.
134-138, February, 1960,
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In summary it should be recognized that one cannot discuss the power
requirements of various space radio-communications systems unless the following

factors are carefully specified:

1. Antenna gain, both on the ground and on the spacecraft

2. Signal-to-noise ratio

3. Bandwidth

4, Transmission frequency

5. Utilization of various incoding, data processing, and bandwidth

compensation techniques

It has been shown that 350 w of electrical power is adequate for the power
requirements during the 1960 - 1965 era for intelligently designed radio communi-

cations systems.

C. Guidance and Control Subsystem

The power requirements for the guidance and control systems envisaged
for the 1960 - 1965 era will not exceed 1/2 to 3/4 kw. Space-stabilized platforms
require approximately 350 w; attitude control systems utilize no more than 75 w,

The average power drawn by actuators in space is negligible because they have
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only to overcome stictions and inertia. The requirements for telemetry data
processing systems do not exceed more than 10 w, The requirements for data
storage and spacecraft computer operation are not expected to exceed 100 w
during the 1960-1865 era. Of course, all these electronic systems incorporate
transistors for reliability reasons.

The area of guidance and control represents an outstanding example of the
nature of some of the trade-offs possible in the design of the spacecraft power
system. Because inertia is the only major reaction torque in the attitude control
of the spacecraft, and because the minimum spacecraft flight time is approxi-
mately 40 hr, it is quite possible to conserve power by limiting the rate of the
maneuvers. Maneuvers which normally require less than a minute in the guided
missile will require one-half to one hour in the spacecraft. This reduction in the
required time of maneuver results in the lessening of the power demand, as

indicated above,

D. Equipment Environmental Control Subsystem

It has been demonstrated that the temperature of spacecraft can be main-
tained at a confortable room temperature of 70°F, +20°F, with either static or
dynamic heat-balance systems that require essentially no power. Systems that
incorporate variable black-white area radiators that are operated by bi-metallic
elements and require no electrical power have been successfully used in space
flights., Flights have been made in which the black-white areas have been

previously determined by analysis and fixed for stellar flight. The thermal lag
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and storage characteristics were such that the temperature did not vary more
than $20°F from room temperature during each satellite orbit,

Internal heat control of the various components of the spacecraft is
another problem which will require close analysis. Because of the lack of gravity
it is necessary to eliminate convection as a cooling mechanism and consideration
must be given to methods of assuring adequate heat transfer by conductive methods
only. In more sophisticated spacecraft approximately 50 w of power may well be
required to circulate a cooling medium and insure adequate heat transfer to space

radiators.

E. Life Support Systems

The power requirements of the early manned space flight systems will be
60 w for the life support system. This power is required to operate fans, and to
remove moisture from the air passing over the astronauts during their planned
30-hour flight. For flights of approximately 100 to 150 days, preliminary anal-
ysis shows that the lighter weight systems are those in which food and oxygen
make-up is carried along. The power requirements for these systems are
relatively small., For operations in excess of 100 to 150 days algae systems are
under development which would be utilized to replace the carbon dioxide in the
air breathed by man and to grow food for his consumption., If electric lights were
used to illuminate the algae, 6 kw of power would be required per man. However,
it is recognizable that large amounts of solar power could be utilized to illum-
inate the algae directly. Approximately two and one-half square meters of

surface per man would be required, and a few watts of power to pump the algae

10
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around in the solar-illuminated structures. Figure 9 and Tables 6 and 7 show,
respectively, a block diagram for a quartz-lamp-illuminated algae system, and
a power analysis of a comparable system, °’

As discussed in Section D above, no power would be required to maintain
a comfortable temperature for the astronauts, for flights in the solar system that
did not go out beyond Mars. While a spacecraft is in the Sun, of course, no
power is required for illumination to observe or record data; while in the

shadow, a 14-w fluorescent lamp would be adequate to provide illumination for

each man.

F. Surface Propulsion Subsystem

For surface propulsion on the Moon or the planets, it is estimated that
from 1/3 to 1 hp would be required to propel small instrument tractors over the
surface at reasonable speeds. Mission analysis has shown that 10 w of electrical

power would be adequate for initial stationary scientific probes.

G. Summary
A summary of the secondary electrical power required during the 1960 -

1965 period for a typical spacecraft is shown in Table 8. For manned probes

7Figure 9 of this Technical Release was presented in a paper, ''Closed-
Cycle Air Purification With Algae'' by D. Burke, G. Hobby, and T. Gaucher of
General Dynamics Corporation, at the First International Naval Symposium of
Submarine and Space Medicine, held at the United States Naval Submarine Base,
New London, Connecticut, September 12, 1958,

8Tables 6 and 7 of this Technical Release were obtained from '""Basic

Remarks on the Use of Plants as Biological Gas Exchangers' by J. Meyers, an
article published in The Journal of Aviation Medicine, Vol. 25, pp. 407-411, 1954,

11
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the power requirements are not estimated to exceed a kilowatt or a few kilowatts

at most, perhaps 1 to 3 kw.
V. POWER SOURCES

It is not the purpose of this paper to review the various solar, nuclear,

and chemical sources for space applications. This subject has been adequately
covered in other papers. The Jet Propulsion Laboratory has devoted considerable
attention to the application of solar cells for missions in the near future. A chart
showing the characteristics of these solar panels to Earth, Mars, and Venus is
shown in Table 9. For the future, the reactor-powered thermo-electric converter
known as SNAP-10 which provides 200 to 300 electrical watts, and is shown con-
ceptually in Fig. 10, appears very attractive for some missions. 9 The develop-
ment of more rugged fuel cells for energy storage applications for satellites and

surface operations is proceeding, and will be needed during the sixties.
VI. SUMMARY

It has been shown above that no more than 3 kw of electrical power will be
required for the secondary electrical power systems during the 1960 - 1965
period. Higher-powered systems, such as the 30 kw SNAP-VIII, are being

developed and are required for the testing in space of electric propulsion motors.

9F:'Lgur‘e 10 of this Technical Release was taken from '""Nuclear Thermo-
electric Power Supply,'" by R. J. Harvey, of Martin Aircraft Corporation,
Baltimore, Maryland, which was presented as Paper No. 59-911 at the Conference
of the American Institute of Electrical Engineers, Seattle, Washington, June 21-
26, 1959,

12
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Within 15 years megawatts of electrical power will be required for
interplanetary electrical propulsion, and for permanent manned bases on the

Moon and the planets.

13



o]

i

<H

o

o

Z

[¢F]

(2}

[}

9

m | *ql Uur UMoys sjTun 1V

E

m 000°S 006°2 00S°‘1-00¢ 00%-0T Y8114 J931dnp

Q

% 000°€2 000°2T 00S2-00¢S 009-62 WYSIA sIeN /Snua A
000°8 000°‘% 000°1-002 00€-0T surpuer] UOO
000°ST 000°9 00ST-00¢ 006-GT 93}I119}BS UOOIN

(JeunjunoJar))
000°62 000°ST 000°€-009 008-06G 1oedwWI] UOOIN
9}11[9}eg AxeuoTiels

00022 000°TI 00S°2-006S 009-6G2 (1y-%g) ‘TW-00% 22
000°G. 000°LE 000°8-000°2 | 000°2-00T | 0€-ST 02 93}IT[93eS ‘TW-(00¢
000°000°€ | 000°00S°T | 000°00¢ 000°0GT 000°G. 00082 Isnay,L,

x 000002 000°00T 000°05-000°0% 000°22 Al ‘Iy3tem

[o]

5

o]

..m uanjeg UeL Ioyrdnp J931dn Jengue wal]

< /senv Jaou, 9 anp P A

2

=

)

& *saniqeded jySrom-peorled pajoadxs pue jusIINd Jo AJewwing °T 9[qRL

@

9

14



Jet Propulsion Laboratory Technical Release No. 34-38

Table 2. Space electrical power systems parameter matrix.

1. OBJECTIVES

1.1 Scientific Exploration
1.2 Military Operations
1.3 Commercial Operations

2. INSTRUMENT OR MANNED OPERATION

2.1 Instrument
2.2 Manned

3. TYPE OF MISSION RE SOLAR AND ENERGY STORAGE

Space Flight Continuously in Sun
Satellite Requiring Energy Storage
Surface Operations

a. Period of shadow operation

b. Surface propulsion power

c. Permanent manned base

w W w
*«. & 9
W N =

4. PROPULSION OR SECONDARY ELECTRICAL POWER SYSTEM

4.1 Propulsion
4.2 Secondary

5. SPACECRAFT WEIGHT

Under 100 1bs

100 - 1000 1bs

1000 - 10, 000 1bs

10, 000 - 100,000 1bs
100, 000 - 1, 000, 000 1bs

orOor Oy O An
o e e e s
Ol i W DN =

6. STATE OF THE ART AS IT WILL DEVELOP IN THE FUTURE

6.1 1960-1965
6.2 1965-1970
6.3 1970-1975
6.4 1975-1980
6.5 1980-1985

15
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Table 9. Regulated solar power performance

Characteristic Venus Earth Mars
Total solar panel area - m2 4,98 4,98 4,98
Effective area - 85% coverage - m? 4,24 4.24 4,24
Sun distance in 106 mi 67.3 92.8 141.7
Solar power above atmosphere - w/m2 2685 1400 605
Photo - voltaic efficiency at 25°C - % 6.86> 6. 86> 6.862
Photo - voltaic temperatureb - °C +97 +39 -21
Photo - voltaic efficiency at operating 4.42 6.39 8. 0c

temperature - %

Power per sq m at 85% coverage - w 102 76 41,1
Total solar panel output - w (6 panels) 503 378 205
Regulated solar power at 70% efficiency - w 352 265 143.5
ﬁ.egulated power output with estimated 5% loss due | 334 252 136

to series - parallel mismatch - w

26.86% efficiency is based on solar power above Earth's atmosphere where

efficiency is lower than at the Earth's surface.

b
Cell temperature calculations assume that the solar panel is thermally
alone in space and emissivity used includes the effect of the glass slide, and the
anti-reflection coating and the ultra-violet reflecting coating.

CAssumes optimum impedance match at -21°C,
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Fig. 8. Lunar photograph, 20 db signal/noise ratio.
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